Laterally - doped heterostructures for III - N lasing devices

نویسندگان

  • K. W. Kim
  • V. A. Kochelap
  • J. M. Zavada
چکیده

To achieve a high-density electron-hole plasma in group-III nitrides for efficient light emission, we propose a planar two-dimensional (2D) p − i − n structure that can be created in selectively-doped superlattices and quantum wells. The 2D p − i − n structure is formed in the quantum well layers due to efficient activation of donors and acceptors in the laterally doped barriers. We show that strongly non-equilibrium 2D electron-hole plasma with density above 1012 cm−2 can be realized in the i−region of the laterally biased p−i−n structure, enabling the formation of interband population inversion and stimulated emission from such a LAteral Current pumped Emitter (LACE). We suggest that implementation of the lateral p− i−n structures provides an efficient way of utilizing potential-profile-enhanced doping of superlattices and quantum wells for electric pumping of nitride-based lasers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of D-Doping on Characteristics of AlAs/GaAs Barriers Grown by Mba at 400 ??C

Effects of d-doping on barriers effective heights and series resistance of highly doped n-type GaAs/AIAs/GaAs/AlAs/GaAs heterostructures, grown by molecular beam epitaxy (MBE) at 400?°C, have been studied. As it was expected, inclusion of an n+ d-doped layer at each hetero-interface has reduced the barriers heights and series resistance of the structure significantly, while p+ d-doped layers ha...

متن کامل

Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers.

Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors and low-temperature quantum devices compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have a...

متن کامل

Lasing in Dye–Doped Photonic Liquid Crystal Devices

We have investigated the effects of pumping laser’s polarization and incident angles, dye concentration, cell gap, and lasing wavelength on the lasing efficiency of the dye doped cholesteric liquid crystal (CLC) devices. These factors impact the lasing efficiency due to the existence of the photon bleaching and quench in the dye molecules, the competition of the optical gain and loss in the med...

متن کامل

Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation

Herein, we report multi-element doped Type-II heterostructure assembly consists of N, S doped TiO2 and ZnO for electrochemical crystal violet dye degradation studies. Electrochemical measurements were performed on these synthesized N-S codoped TiO2/ZnO compositeheterostructured assemblies which are fabricated on Titanium (Ti) substrate. It was observed that a composite ele...

متن کامل

Proximity effects of beryllium-doped GaN buffer layers on the electronic properties of epitaxial AlGaN/GaN heterostructures

AlGaN/GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on freestanding semi-insulating GaN substrates, employing unintentionally-doped (UID) GaN buffer layers with thicknesses, dUID, varying between 50 nm and 500 nm. We have found that the heterostructures with UID buffers thicker than 200 nm exhibit much improved Hall properties and inter-device isolation current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002